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Abstract

We construct polynomial conformal invariants, the vanishing of which is necessary and sufficient
for ann-dimensional suitably generic (pseudo-)Riemannian manifold to be conformal to an Einstein
manifold. We also construct invariants which give necessary and sufficient conditions for a metric
to be conformally related to a metric with vanishing Cotton tensor. One set of invariants we derive
generalises the set of invariants in dimension 4 obtained by Kozameh, Newman and Tod. For the
conformally Einstein problem, another set of invariants we construct gives necessary and sufficient
conditions for a wider class of metrics than covered by the invariants recently presented by Listing.
We also show that there is an alternative characterisation of conformally Einstein metrics based on
the tractor connection associated with the normal conformal Cartan bundle. This plays a key role in
constructing some of the invariants. Also using this we can interpret the previously known invariants
geometrically in the tractor setting and relate some of them to the curvature of the Fefferman–Graham
ambient metric.
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1. Introduction

The central focus of this article is the problem of finding necessary and sufficient con-
ditions for a Riemannian or pseudo-Riemannian manifold, of any signature and dimension
n ≥ 3, to be locally conformally related to an Einstein metric. In particular we seek invari-
ants, polynomial in the Riemannian curvature and its covariant derivatives, that give a sharp
obstruction to conformally Einstein metrics in the sense that they vanish if and only if the
metric concerned is conformally related to an Einstein metric. For example in dimension 3
it is well known that this problem is solved by the Cotton tensor, which is a certain tensor
part of the first covariant derivative of the Ricci tensor. So 3-manifolds are conformally
Einstein if and only if they are conformally flat. The situation is significantly more com-
plicated in higher dimensions. Our main result is that we are able to solve this problem
in all dimensions and for metrics of any signature, except that the metrics are required to
be non-degenerate in the sense that they are, what we term, weakly generic. This means
that, viewed as a bundle mapTM → ⊗3TM, the Weyl curvature is injective. The results
are most striking for Riemanniann-manifolds where we obtain a single trace-free rank
two tensor-valued conformal invariant that gives a sharp obstruction. Setting this invariant
to zero gives a quasi-linear equation on the metric. Returning to the setting of arbitrary
signature, we also show that a manifold is conformally Einstein if and only if a certain vec-
tor bundle, the so-called standard tractor bundle, admits a parallel section. This powerful
characterisation of conformally Einstein metrics is used to obtain the sharp obstructions
for conformally Einstein metrics in the general weakly generic pseudo-Riemannian and
Riemannian setting. It also yields a simple geometric derivation, and unifying framework,
for all the main theorems in the paper.

The study of conditions for a metric to be conformally Einstein has a long history that
dates back to the work of Brinkman[4,5] and Schouten[29]. Substantial progress was
made by Szekeres in 1963[30]. He solved the problem on 4-manifolds, of signature−2, by
explicitly describing invariants that provide a sharp obstruction. However his approach is
based on a spinor formalism and is difficult to analyse when translated into the equivalent
tensorial picture. In the 1980s Kozameh, Newman and Tod (KNT)[19] found a simpler set
of conditions. While their construction was based on Lorentzian 4-manifolds the invariants
obtained provide obstructions in any signature. However these invariants only give a sharp
obstruction to conformally Einstein metrics if a special class of metrics is excluded (see
also[20] for the reformulation of the KNT result in terms of the Cartan normal conformal
connection). Baston and Mason[3] proposed another pair of conformally invariant obstruc-
tion invariants for 4-manifolds. However these give a sharp obstruction for a smaller class
of metrics than the KNT system (see[1]).

One of the invariants in the KNT system is the conformally invariant Bach tensor. In
higher even dimensions there is an interesting higher order analogue of this trace-free sym-
metric 2-tensor due to Fefferman and Graham and this is also an obstruction to conformally
Einstein metrics[11,17,18]. This tensor arises as an obstruction to their ambient metric
construction. It has a close relationship to some of the constructions in this article, but
this is described in[17]. Here we focus on invariants which exist in all dimensions. Re-
cently Listing[21] made a substantial advance. He described a trace-free 2-tensor that gives,
in dimensionsn ≥ 4, a sharp obstruction for conformally Einstein metrics, subject to the
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restriction that the metrics are what he terms “non-degenerate”. This means that the Weyl
curvature is maximal rank as a map�2TM → �2TM. In this paper metrics satisfying this
non-degeneracy condition are instead termed�2-generic.

Following some general background, we show in Sections2.3 and 2.4that it is possible
to generalise to arbitrary dimensionn ≥ 4 the development of KNT. This culminates in the
construction of a pair of (pseudo-)Riemannian invariantsF1

abc andF2
ab whose vanishing is

necessary and sufficient for the manifold to be conformally Einstein provided we exclude
a small class of metrics (but the class is larger than the class failing to be�2-generic)
(seeTheorem 2.3). These invariants arenatural in the sense that they are given by a metric
partial contraction polynomial in the Riemannian curvature and its covariant derivatives.F1

is conformally covariant andF2 is conformally covariant on metrics for whichF2 vanishes.
Thus together they form a conformally covariant system.

In Section2.5we show that very simple ideas reveal new conformal invariants that are
more effective than the systemF1 andF2 in the sense that they give sharp obstructions
to conformal Einstein metrics on a wider class of metrics. Here the broad treatment is
based on the assumption that the metrics are weakly generic as defined earlier. This is a
strictly weaker restriction than requiring metrics to be�2-generic; any�2-generic metric
is weakly generic but in general the converse fails to be true. One of the main results of the
paper isTheorem 2.8which gives a natural conformally invariant trace-free 2-tensor which
gives a sharp obstruction for conformally Einstein metrics on weakly generic Riemannian
manifolds. Thus in the Riemannian setting this improves Listing’s results. In Riemannian
dimension 4 there is an even simpler obstruction, seeTheorem 2.9, but an equivalent result
is in [21]. In Theorem 2.10we also recover Listing’s main results for�2-generic metrics
as special case of the general setup. In all cases the invariants give quasi-linear equations.
The results mentioned are derived from the general result inProposition 2.7. We should
point out that while this proposition does not in general lead to natural obstructions, in
many practical situations, for example if a metric is given explicitly in terms of a basis field,
this would still provide an effective route to testing whether or not a metric is conformally
Einstein, since a choice of tensorD̃ can easily be described. (See the final remark at the end
of Section2.5.)

In Section2.5 we also pause, inProposition 2.5and Theorem 2.6, to observe some
sharp obstructions to metrics being conformal to a metric with vanishing Cotton tensor. We
believe these should be of independent interest. Since the vanishing of the Cotton tensor
is necessary but not sufficient for a metric to be Einstein, it seems that the Cotton tensor
could play a role in setting up problems where one seeks metrics suitably “close” to being
Einstein or conformally Einstein.

In Section3, following some background on tractor calculus, we give the characterisation
of conformally Einstein metrics as exactly those for which the standard tractor bundle
admits a (suitably generic) parallel section. The standard (conformal) tractor bundle is an
associated structure to the normal Cartan conformal connection. The derivations in Section
2 are quite simple and use just elementary tensor analysis and Riemannian differential
geometry. However they also appear ad hoc. We show in Section3 that the constructions
and invariants of Section2 have a natural and unifying geometric interpretation in the
tractor/Cartan framework. This easily adapts to yield new characterisations of conformally
Einstein metrics, seeTheorem 3.4. From this we obtain, inCorollary 3.5, obstructions for
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conformally Einstein metrics that are sharp for weakly generic metrics of any signature.
Thus these also improve on the results in[21].

We believe the development in Section3 should have an important role in suggesting
how an analogous programme could be carried out for related conformal problems as well
as analogues on, for example, CR structures where the structure and tractor calculus is
very similar. We also use this machinery to show that the systemF1, F2 has a simple
interpretation in terms of the curvature of the Fefferman–Graham ambient metric.

Finally in Section4we discuss explicit metrics to shed light on the invariants constructed
and their applicability. This includes examples of classes metrics which are weakly generic
but not�2-generic. Also here, as an example use of the machinery on explicit metrics,
we identify the conformally Einstein metrics among a special class of Robinson–Trautman
metrics.

The authors wish to thank Ruibin Zhang, Paul-Andi Nagy and Michael Eastwood for
very helpful discussions. Finally the authors are grateful to the referee for several helpful
suggestions.

2. Conformal characterisations via tensors

In this section we use standard tensor analysis on (pseudo-)Riemannian manifolds to
derive sharp obstructions to conformally Einstein metrics.

2.1. Basic (pseudo-)Riemannian objects

Let M be a smooth manifold, of dimensionn ≥ 3, equipped with a Riemannian or
pseudo-Riemannian metricgab. We employ Penrose’s abstract index notation[27] and
indices should be assumed abstract unless otherwise indicated. We writeEa to denote the
space of smooth sections of the tangent bundle onM, andEa for the space of smooth sections
of the cotangent bundle. (In fact we will often use the same symbols for the corresponding
bundles, and also in other situations we will often use the same symbol for a given bundle
and its space of smooth sections, since the meaning will be clear by context.) We writeE for
the space of smooth functions and all tensors considered will be assumed smooth without
further comment. An index which appears twice, once raised and once lowered, indicates
a contraction. The metricgab and its inversegab enable the identification ofEa andEa and
we indicate this by raising and lowering indices in the usual way.

The metricgab defines the Levi–Civita connection∇a with the curvature tensorRab
c
d

given by

(∇a∇b − ∇b∇a)Vc = Rab
c
dV

d, whereVc ∈ Ec.

This can be decomposed into the totally trace-freeWeyl curvature Cabcd and the symmetric
Schouten tensor Pab according to

Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c.
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ThusPab is a trace modification of the Ricci tensorRab = Rca
c
b:

Rab = (n − 2)Pab + Jgab, J := Pa
a.

Note that the Weyl tensor has the symmetries

Cabcd = C[ab][cd] = Ccdab, C[abc]d = 0,

where we have used the square brackets to denote the antisymmetrisation of the indices.
We recall that the metricgab is an Einstein metric if the trace-free part of the Ricci tensor

vanishes. This condition, when written in terms of the Schouten tensor, is given by

Pab − 1

n
Jgab = 0.

In the following we will also need the Cotton tensorAabc and the Bach tensorBab. These
are defined by

Aabc := 2∇[bPc]a (2.1)

and

Bab := ∇cAacb + PdcCdacb. (2.2)

It is straightforward to verify that the Bach tensor is symmetric. From the contracted Bianchi
identity∇aPab = ∇bJ it follows that the Cotton tensor is totally trace-free. Using this, and
that the Weyl tensor is trace-free, it follows that the Bach tensor is also trace-free.

Let us adopt the convention that sequentially labelled indices are implicitly skewed over.
For example with this notation the Bianchi symmetry is simplyRa1a2a3b = 0. Using this
symmetry and the definition(2.1)of Aba1a2 we obtain a useful identity

∇a1Aba2a3 = Pc
a1

Ca2a3bc. (2.3)

Further important identities arise from the Bianchi identity∇a1Ra2a3de = 0:

∇a1Ca2a3cd = gca1Ada2a3 − gda1Aca2a3, (2.4)

(n − 3)Aabc = ∇dCdabc, (2.5)

∇aPab = ∇bJ, (2.6)

∇aAabc = 0. (2.7)

2.2. Conformal properties and naturality

Metricsgab andĝab are said to be conformally related if

ĝab = e2ϒgab, ϒ ∈ E, (2.8)
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and the replacement ofgab with ĝab is termed aconformal rescaling. Conformal rescaling
in this way results in a conformal transformation of the Levi–Civita connection. This is
given by

∇̂aub = ∇aub − ϒaub − ϒbua + gabϒ
cuc (2.9)

for a 1-form ub. The conformal transformation of the Levi–Civita connection on other
tensors is determined by this, the duality between 1-forms and tangent fields, and the Leibniz
rule.

A tensorT (with any number of covariant and contravariant indices) is said to becon-
formally covariant (of weight w) if, under a conformal rescaling(2.8) of the metric, it
transforms according to

T �→ T̂ = ewϒT,

for somew ∈ R. We will say T is conformally invariant if w = 0. We are particularly
interested in natural tensors with this property. A tensorT is natural if there is an expression
for T which is a metric partial contraction, polynomial in the metric, the inverse metric, the
Riemannian curvature and its covariant derivatives.

The weight of a conformally covariant depends on the placement of indices. It is well
known that the Cotton tensor in dimensionn = 3 and the Weyl tensor in dimensionn ≥ 3
are conformally invariant with their natural placement of indices, i.e.Âabc = Aabc and
Ĉab

c
d = Cab

c
d . In dimensionn ≥ 4, vanishing of the Weyl tensor is equivalent to the

existence of a scaleϒ such that the transformed metric ˆgab = e2ϒgab is flat (and so if the
Weyl tensor vanishes we say the metric isconformally flat). In dimensionn = 3 the Weyl
tensor vanishes identically. In this dimensiongab is conformally flat if and only if the Cotton
tensor vanishes.

An example of tensor which fails to be conformally covariant is the Schouten tensor. We
have

Pab → P̂ab = Pab − ∇aϒb + ϒaϒb − 1
2ϒcϒ

cgab, (2.10)

where

ϒa = ∇aϒ.

Thus the property of the metric being Einstein is not conformally invariant. A metricgab is
said to beconformally Einstein if there exists a conformal scaleϒ such that ˆgab = e2ϒgab

is Einstein.
For natural tensors the property of being conformally covariant or invariant may depend

on dimension. For example it is well known that the Bach tensor is conformally covariant
in dimension 4. In other dimensions the Bach tensor fails to be conformally covariant.

2.3. Necessary conditions for conformally Einstein metrics

Suppose thatgab is conformally Einstein. As mentioned above this means that there exists
a scaleϒ such that the Ricci tensor, or equivalently the Schouten tensor for ˆgab := e2ϒgab,
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is pure trace. That is

P̂ab − 1

n
Ĵĝab = 0.

This equation, when written in terms of Levi–Civita connection∇ and Schouten tensorPab

associated withgab reads,

Pab − ∇aϒb + ϒaϒb − 1

n
Tgab = 0, (2.11)

where

T = J − ∇aϒa + ϒaϒa.

Conversely if there is a gradientϒa = ∇aϒ satisfying(2.11) then ĝab := e2ϒgab is an
Einstein metric. Thus, with the understanding thatϒa = ∇aϒ, (2.11)will be termed the
conformal Einstein equations. There exists a smooth functionϒ solving these if and only
if the metricg is conformally Einstein.

To find consequences of these equations we apply∇c to both sides of(2.11)and then
antisymmetrise the result over the{ca} index pair. Using that the both the Weyl tensor and
the Cotton tensor are completely trace-free this leads to the first integrability condition
which is

Aabc + ϒdCdabc = 0.

Now taking∇c of this equation, using the definition of the Bach tensor(2.2), the identity
(2.5), and again this last displayed equation, we get

Bab + PdcCdabc − (∇cϒd − (n − 3)ϒdϒc)Cdabc = 0.

Eliminating∇cϒd by means of the Einstein condition(2.11)yields a second integrability
condition:

Bab + (n − 4)ϒdϒcCdabc = 0.

Summarising we have the following proposition.

Proposition 2.1. If gab is a conformally Einstein metric then the corresponding Cotton
tensor Aabc and the Bach tensor Bab satisfy the following conditions

Aabc + ϒdCdabc = 0, (2.12)

and

Bab + (n − 4)ϒdϒcCdabc = 0. (2.13)
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for some gradient

ϒd = ∇dϒ.

Hereϒ is a function which conformally rescales the metricgab to an Einstein metric
ĝab = e2ϒgab.

Remarks:

• Note that in dimensionn = 3 the first integrability condition(2.12)reduces toAabc = 0
and the Weyl curvature vanishes. Thus, in dimensionn = 3, if (2.12)holds then(2.13)is
automatically satisfied and the conformally Einstein metrics are exactly the conformally
flat metrics. The vanishing of the Cotton tensor is the necessary and sufficient condition
for a metric to satisfy these equivalent conditions. This well known fact solves the problem
in dimensionn = 3. Therefore, for the remainder of Section2we will assume thatn ≥ 4.

• In dimensionn = 4 the second integrability condition reduces to the conformally invari-
ant Bach equation:

Bab = 0. (2.14)

2.4. Generalising the KNT characterisation

Here we generalise to dimensionn ≥ 4 the characterisation of conformally Einstein
metrics given by Kozameh et al.[19]. Our considerations are local and so we assume,
without loss of generality, thatM is oriented and writeε for the volume form. Given the
Weyl tensorCabcd of the metricgab, we writeC∗

b1···bn−2cd
:= εb1···bn−2

a1a2Ca1a2cd . Note that
this is completely trace-free due to the Weyl Bianchi symmetryCa1a2a3b = 0. Consider the
equations

CabcdF
ab = 0, (2.15)

CabcdH
bd = 0, (2.16)

and

C∗
b1···bn−2cd

Hb1d = 0, (2.17)

for a skew symmetric tensorFab and a symmetric trace-free tensorHab. We say that the
metricgab is generic if and only if the only solutions to Eqs.(2.15)–(2.17)areFab = 0 and
Hab = 0. Occasionally we will be interested in the superclass of metrics for which(2.15)
has only trivial solutions but for which we make no assumptions about(2.16) and (2.17);
we will call these�2-generic metrics. That is, a metric is�2-generic if and only if the Weyl
curvature is injective (equivalently, maximal rank) as a bundle map�2TM → �2TM. Let
‖C‖ be the natural conformal invariant which is the pointwise determinant of the map

C : �2T ∗M → �2T ∗M, (2.18)

given byWab �→ Cab
cdWcd and writeC̃abcd for the tensor field which is the pointwise adju-

gate (i.e. “matrix of cofactors”) of the Weyl curvature tensor, viewed as an endomorphism
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in this way. Then

C̃ef
abCab

cd = ‖C‖δ[c
[eδ

d]
f ]

and if g is a�2-generic metric then‖C‖ is non-vanishing and we have

‖C‖−1C̃ef
abCab

cd = δ
[c
[eδ

d]
f ] . (2.19)

For later use note that it is easily verified thatC̃abcd is natural (in fact simply polynomial in
the Weyl curvature) and conformally covariant.

For the remainder of this subsection we consider only generic metrics, except where
otherwise indicated. In this setting, we will prove that the following two conditions are
equivalent:

(i) The metricgab is conformally Einstein.
(ii) There exists a vector fieldKa on M such that the following conditions [C] and [B] are

satisfied:

[C] Aabc + KdCdabc = 0, [B] Bab + (n − 4)KdKcCdabc = 0.

Adapting a tradition from the General Relativity literature (originating in[30]), we call a
manifold for which the metricgab admitsKa such that condition [C] is satisfied aconformal
C-space. Note that such a metric isnot necessarily conformal to a metric with vanishing
Cotton tensor since in [C] we are not requiringKa to be a gradient. (Thus some care is
necessary when comparing with[30,19] for example where a space with vanishing Cotton
tensor is termed a C-space.) However, in the case of ageneric metric satisfying condition
[C] the fieldKd must be a gradient. To see this take∇a of equation [C]. This gives

∇aAabc + Cdabc∇aKd + (n − 3)KaKdCadbc = 0,

where, in the last term, we have used identity(2.5) and eliminatedAdbc via [C]. The last
term in this expression obviously vanishes identically. On the other hand the first term
also vanishes, because of identity(2.7). Thus a simple consequence of equation [C] is
Cdabc∇aKd = 0. Thus, since the metric is generic (in fact for this result we only need that
it is �2-generic), we can conclude that

∇ [aKd] = 0.

Therefore, at least locally, there exists a functionϒ such that

Kd = ∇dϒ. (2.20)

Thus, we have shown that our conditions [C] and [B] are equivalent to the necessary con-
ditions(2.12) and (2.13)for a metric to be conformally Einstein.
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To prove the sufficiency we first take∇c of [C]. This, after using the identity(2.5)and
the definition of the Bach tensor(2.2), takes the form

Bab + PdcCdabc − Cdabc∇cKd + (n − 3)KdKcCdabc = 0.

Now, subtracting from this equation our second condition [B] we get

Cdabc(Pdc − ∇cKd + KdKc) = 0. (2.21)

Next we differentiate equation [C] and skew to obtain

∇a1Aca2a3 − Ca2a3cd∇a1K
d − Kd∇a1Ca2a3cd = 0.

Then using(2.3), the Weyl Bianchi identity(2.4), and [C] once more we obtain

Ca2a3cd(Pa1
d − ∇a1K

d + Ka1K
d) = 0

or equivalently

C∗
b1···bn−2cd

(Pb1 d − ∇b1Kd + Kb1Kd) = 0. (2.22)

But this condition and(2.21)together imply thatPdc − ∇cKd + KdKc must be a pure trace,
due to(2.16) and (2.17). Thus,

Pdc − ∇cKd + KdKc = 1

n
Tgcd.

This, when compared with our previous result(2.20)onKa, and with the conformal Einstein
equations(2.11), shows that our metric can be scaled to the Einstein metric with the function
ϒ defined by(2.20). This proves the following theorem.

Theorem 2.2. A generic metric gab on an n-manifold M is conformally Einstein if and only
if its Cotton tensor Aabc and its Bach tensor Bab satisfy

[C] Aabc + KdCdabc = 0, [B] Bab + (n − 4)KdKcCdabc = 0

for some vector field Ka on M.

We will show below, and in the next section that [C] is conformally invariant and that,
while [B] is not conformally invariant, the system [C], [B] is. In particular [B] is conformally
invariant for metrics satisfying [C], the conformal C-space metrics. Next note that, although
we settled dimension 3 earlier, the above theorem also holds in that case since the Weyl
tensor vanishes identically and the Bach tensor is just a divergence of the Cotton tensor.
In other dimensions we can easily eliminate theundetermined vector fieldKd from this
theorem. Indeed, using the tensor‖C‖−1C̃ed

bc of (2.19)and applying it on the condition
[C] we obtain

‖C‖−1C̃ed
bcAabc + 1

2(Kegda − Kdgea) = 0.
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By contracting over the indices{ea}, this gives

Kd = 2

1 − n
‖C‖−1C̃dabcAabc. (2.23)

Inserting(2.23)into the equations [C] and [B] ofTheorem 2.2, we may reformulate the
theorem as the observation that a generic metricgab on ann-manifoldM (wheren ≥ 4) is
conformally Einstein if and only if its Cotton tensorAabc and its Bach tensorBab satisfy

[C′] (1 − n)Aabc + 2‖C‖−1CdabcC̃
defgAefg = 0

and

[B′] (n − 1)2Bab + 4(n − 4)‖C‖−2C̃defgCdabcC̃
chklAefgAhkl = 0.

These are equivalent to conditions polynomial in the curvature. Multiplying the left-hand
sides of [C′] and [B′] by, respectively,‖C‖and‖C‖2 we obtain natural (pseudo-)Riemannian
invariants which are obstructions to a metric being conformally Einstein,

F1
abc := (1 − n)‖C‖Aabc + 2CdabcC̃

defgAefg

and

F2
ab = (n − 1)2‖C‖2Bab + 4(n − 4)C̃defgCdabcC̃

chklAefgAhkl.

By construction the first of these is conformally covariant (see below), the second tensor is
conformally covariant for metrics such thatF1

abc = 0, and we have the following theorem.

Theorem 2.3. A generic metric gab on an n-manifold M (where n ≥ 4) is conformally
Einstein if and only if the natural invariants F1

abc and F2
ab both vanish.

Remarks:

• In dimensionn = 4 there exist examples of metrics satisfying the Bach equations [B] and
not being conformally Einstein (see e.g.[24]). In higher dimensions it is straightforward
to write down generic Riemannian metrics which, at least at a formal level, have vanishing
Bach tensor but for which the Cotton tensor is non-vanishing. Thus the integrability
condition [B] does not suffice to guarantee the conformally Einstein property of the
metric. In Section4we discuss an example of special Robinson–Trautman metrics, which
satisfy the condition [C] and do not satisfy [B]. (These are generic.) Thus condition [C]
alone is not sufficient to guarantee the conformal Einstein property.

• The development above parallels and generalises the tensor treatment in[19] which is
based in dimension 4. It should be pointed out however that there are some simplifica-
tions in dimension 4. FirstlyF2

ab simplifies to 9‖C‖2Bab. It is thus sensible to use the
conformally invariant Bach tensorBab as a replacement forF2 in dimension 4. Also
note, from the development in[19], that the conditions that a metricgab be generic may
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be characterised in a particularly simple way in Lorentzian dimension 4. In this case they
are equivalent to the non-vanishing of at least one of the following two quantities:

C3 := CabcdC
cd

ef Cefab or ∗ C3 := ∗Cabcd ∗ Ccd
ef ∗ Cefab,

where∗Cabcd = C∗
abcd = εabef Cef

cd .

2.5. Conformal invariants giving a sharp obstruction

We will show in the next section that the systems [C] and [B] have a natural and valuable
geometric interpretation. However its value, or the equivalent obstructionsF1 andF2, as a
test for conformally Einstein metrics is limited by the requirement that the metric is generic.
Many metrics fail to be generic. For example in the setting of dimension 4 Riemannian
structures any selfdual metric fails to be generic (and even fails to be�2-generic), since
any anti-selfdual two form is a solution of(2.15); at each point the solution space of(2.15)
is at least three-dimensional (see[25] for an explicit Ricci-flat example of this type). In the
remainder of this section we show that there are natural conformal invariants that are more
effective, for detecting conformally Einstein metrics, than the pairF1 andF2.

Let us say that a (pseudo-)Riemannian manifold isweakly generic if, at each pointx ∈ M,
the only solutionVd ∈ TxM to

CabcdV
d = 0 atx ∈ M (2.24)

is Vd = 0. From(2.19)it is immediate that all�2-generic spaces are weakly generic and
hence all generic spaces are weakly generic. Via elementary arguments we will observe that
on weakly generic manifolds there is a (smooth) tensor fieldD̃ab

c
d with the property that

D̃ac
d
eCbc

d
e = −δa

b.

Of courseD̃ab
c
d is not uniquely determined by this property. However in many settings

there is a canonical choice. For example in the case of Riemannian signatureg is weakly
generic if and only ifLa

b := CacdeCbcde is invertible. Let us writeL̃a
b for the tensor field

which is the pointwise adjugate ofLa
b. L̃a

b is given by a formula which is a partial contraction
polynomial (and homogeneous of degree 2n − 2) in the Weyl curvature and for any structure
we have

L̃a
bL

b
c = ‖L‖δa

c,

where‖L‖ denotes the determinant ofLa
b. Let us define

Dacde := −L̃a
bC

bcde.

ThenDacde is a natural conformal covariant defined on all structures. On weakly generic Rie-
mannian structures, or pseudo-Riemannian structures where we have‖L‖ non-vanishing,
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there is a canonical choice forD̃, viz.

D̃acde := ‖L‖−1Dacde = −‖L‖−1L̃a
bC

bcde. (2.25)

In other signatures we may obtain a smoothD̃ac
d
e by a similar argument but the

construction is no longer canonical. On a manifoldM with a metricg of indefinite sig-
nature this goes as follows. Instead of definingL as above let̄La

b := C̄acdeCbcde where
C̄acde := ḡaf ḡchḡdiḡejCfhij with ḡaf the inverse of any fixedchoice of smooth positive def-
inite metric ḡ on M. (HereCfhij is the Weyl curvature for the original metricg.) Then
as above we have that the metricg is weakly generic if and only ifL̄a

b is invertible.

Thus, with ˜̄L
a

b and‖L̄‖ denoting, respectively, the pointwise adjugate and the determi-

nant ofL̄a
b, it is clear that by constructioñDacde := −‖L̄‖−1 ˜̄L

a

bC̄
bcde is smooth and gives

D̃ac
d
eCbc

d
e = −δa

b.

The last construction argument proves the existence of a smoothD̃ on indefinite weakly
generic manifolds but the construction is not canonical since it depends on the artifi-
cial choice of the auxiliary metric ¯g. The main interest is in canonical constructions.
Another such construction arises if (in any signature)g is �2-generic. Then we may
take

D̃acde := 2

1 − n
‖C‖−1C̃acde (2.26)

as was done implicitly in the previous section. RecallC̃ac
d
e is conformally invariant and

natural. The examples(2.25) and (2.26)are particularly important since they are easily
described and apply to any dimension (greater than 3). However in a given dimension there
are many other possibilities which lead to formulae of lower polynomial order if we know,
or are prepared to insist that, certain invariants are non-vanishing (see[10] for a discussion
in the context of�2-generic structures). For example in the setting of dimension 4 and
Lorentzian signature,�2-generic impliesC3 = Cab

cdCcd
ef Cef

ab is non-vanishing and one
may takeD̃acde = Cde

fgC
fgca/C3 cf. [19]. In any case let us fix some choice forD̃. Note

that since the Weyl curvatureCbc
d
e for a metricg is the same as the Weyl tensor for a

conformally related metric ˆg, it follows that we can (and will) use the same tensor field
D̃ab

c
d for all metrics in the conformal class.

For weakly generic manifolds it is straightforward to give a conformally invariant tensor
that vanishes if and only if the manifold is conformally Einstein. For the remainder of this
section we assume the manifold is weakly generic.

We have observed already that the conformally Einstein manifolds are a subclass of
conformal C-spaces. Recall that a conformal C-space is a (pseudo-)Riemannian manifold
which admits a 1-form fieldKa which solves the equation [C]:

Aabc + KdCdabc = 0.

If Kd
1 andKd

2 are both solutions to [C] then, evidently, (Kd
1 − Kd

2)Cdabc = 0. Thus, if the
manifold is weakly generic,Kd

1 = Kd
2. In fact if Kd is a solution to [C] then clearly

Kd = D̃d
abcAabc, (2.27)
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which also shows that at most one vector fieldKd solves [C] on weakly generic manifolds.
From either result, combined with the observations that the Cotton tensor is preserved by
constant conformal metric rescalings and that constant conformal rescalings take Einstein
metrics to Einstein metrics, we have the following results.

Proposition 2.4. On a manifold with a weakly generic metric g, the equation [C] has at
most one solution for the vector field Kd .

Either there are no metrics, conformally related to g, that have vanishing Cotton tensor
or the space of such metrics is one-dimensional. Either there are no Einstein metrics,
conformally related to g, or the space of such metrics is one-dimensional.

If g is a metric with vanishing Cotton tensor we will say this is aC-space scale.
Now, for an alternative view of conformal C-spaces, we may take(2.27)as thedefinition

of Kd . Note then that from(2.10), a routine calculation shows thatÂabc = Aabc + ϒkCkabc,
and so (using the conformal invariance ofD̃d

abc) Kd = D̃d
abcAabc has the conformal trans-

formation

K̂d = Kd − ϒd,

whereÂabc andK̂d are calculated in terms of the metric ˆg = e2ϒg andϒa = ∇aϒ. Thus
Aabc + KdCdabc is conformally invariant. FromProposition 2.4and(2.27)this tensor is a
sharp obstruction to conformal C-spaces in the following sense.

Proposition 2.5. A weakly generic manifold is a conformal C-space if and only if the
conformal invariant

Aabc + D̃dijkAijkCdabc

vanishes.

In any case wherẽDdijk is given by a Riemannian invariant formulae rational in the
curvature and its covariant derivatives (e.g.g is of Riemannian signature, or thatg is �2-
generic) we can multiply the invariant here by an appropriate polynomial invariant to obtain
a natural conformal invariant. Indeed, in the setting of�2-generic metrics, the invariantF1

abc

(from Section2.4) is an example. Since, on�2-generic manifolds, the vanishing ofF1
abc

implies that(2.23)is locally a gradient, we have the following theorem.

Theorem 2.6. For a �2-generic Riemannian or pseudo-Riemannian metric g the conformal
covariant F1

abc,

(1 − n)‖C‖Aabc + 2CdabcC̃
defgAefg

vanishes if and only if g is conformally related to a Cotton metric (i.e. a metric ĝ such that
its Cotton tensor vanishes, Âabc = 0).

In the case of Riemannian signature�2-generic metrics we may replace the conformal
invariantF1

abc in the theorem with the conformal invariant,

‖L‖Aabc − CefghAfghL̃
d
eCdabc, n ≥ 4. (2.28)
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In dimension 4 there is an even simpler invariant. Note that in dimension 4 we have

4CabcdCabce = |C|2δd
e , (2.29)

where|C|2 := CabcdCabcd and soL is a multiple of the identity. Eliminating, from(2.28),
the factor of (|C|2)3 and a numerical scale we obtain the conformal invariant

|C|2Aabc − 4CdefgAefgCdabc, n = 4,

which again can be used to replaceF1
abc in the theorem for dimension 4�2-generic metrics.

We can also characterise conformally Einstein spaces.

Proposition 2.7. A weakly generic metric g is conformally Einstein if and only if the
conformally invariant tensor

Eab := Trace-free[Pab − ∇a(D̃bcdeA
cde) + D̃aijkA

ijkD̃bcdeA
cde]

vanishes.

Proof. The proof thatEab is conformally invariant is a simple calculation using(2.10)and
the transformation formula forKd = D̃d

abcAabc.
If g is conformally Einstein then there is a gradientϒa such that

Trace-free[Pab − ∇aϒb + ϒaϒb] = 0.

From Section2.3this impliesϒa solves the C-space equation (see(2.12)) and hence, from
(2.27), ϒa = D̃aijkA

ijk, and soEab = 0.
Conversely suppose thatEab = 0. Then the skew part ofEab vanishes and sincePab and

D̃aijkA
ijkD̃bcdeA

cde are symmetric we conclude thatD̃bcdeA
cde is closed and hence, locally

at least, is a gradient.�
Now suppose‖L‖ is non-vanishing and takẽDabcd to be given as in(2.25). Note that

sinceEab is conformally invariant it follows that‖L‖2Eab is conformally invariant. This
expands to

Gab := Trace-free[‖L‖2Pab − ‖L‖∇a(DbcdeA
cde) + (∇a||L||)(DbcdeA

cde)

+ DaijkA
ijkDbcdeA

cde].

This is natural by construction. Since it is given by a universal polynomial formula which
is conformally covariant on structures for which‖L‖ is non-vanishing, it follows from
an elementary polynomial continuation argument that it is conformally covariant on any
structure. Note‖L‖ is a conformal covariant of weight−4n. Thus we have the following
theorem on manifolds of dimensionn ≥ 4.

Theorem 2.8. The natural invariant Gab is a conformal covariant of weight −8n. A
manifold with a weakly generic Riemannian metric g is conformally Einstein if and only
if Gab vanishes. The same is true on pseudo-Riemannian manifolds where the conformal
invariant ‖L‖ is non-vanishing.
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Recall that in dimension 4 we have the identity(2.29). Thus‖L‖ is non-vanishing if and
only if |C|2 is non-vanishing and we obtain a considerable simplification. In particular the
invariantGab has an overall factor of (|C|2)6 that we may divide out and still have a natu-
ral conformal invariant. This corresponds to taking (|C|2)2Eab with D̃abcd = − 4

|C|2 Cabcd .
Hence we have a simplified obstruction as follows.

Theorem 2.9. The natural invariant

Trace-free[(|C|2)2Pab + 4|C|2∇a(CbcdeA
cde) − 4CbcdeA

cde∇a|C|2

+ 16CaijkA
ijkCbcdeA

cde]

is conformally covariant of weight −8.
A 4-manifold with |C|2 nowhere vanishing is conformally Einstein if and only if this

invariant vanishes.

In the case of Riemannian 4-manifolds, requiring|C|2 non-vanishing is the same as
requiring the manifold to be weakly generic. In this setting this is a very mild assumption;
note that|C|2 = 0 atp ∈ M if and only ifCabcd = 0 atp (and so the manifold is conformally
flat atp).

Note also that if we denote byFab the natural invariant in the theorem then on Riemannian
4 manifolds the (conformally covariant) scalar functionFabF

ab is an equivalent sharp
obstruction to the manifold being conformally Einstein.

Now suppose we are in the setting of�2-generic structures (of any fixed signature). Then
Eab is well defined and conformally invariant with̃Dabcd given by(2.26). Thus again by
polynomial continuation we can conclude that the natural invariant obtained by expanding
‖C‖2Eab, viz.

Ḡab := Trace-free[(1− n)2‖C‖2Pab − 2(1− n)‖C‖∇a(C̃bcdeA
cde)

+ 2(1− n)(∇a‖C‖)(C̃bcdeA
cde) + 4C̃aijkA

ijkC̃bcdeA
cde]

is conformally covariant on any structure (i.e. not necessarily�2-generic). Thus we have
the following theorem on manifolds of dimensionn ≥ 4.

Theorem 2.10. The natural invariant Ḡab is a conformal covariant of weight 2n(1 − n).
A manifold with a �2-generic metric g is conformally Einstein if and only if Ḡab vanishes.

We should point out that there is further scope, in each specific dimension, to obtain
simplifications and improvements toTheorems 2.8 and 2.10along the lines ofTheorem 2.9.
For example in dimension 4 the complete contractionC3 = Cab

cdCcd
ef Cef

ab, mentioned
earlier, is a conformal covariant which is independent of|C|2 (see e.g.[26]). Thus on pseudo-
Riemannian structures this may be non-vanishing when|C|2 = 0. There is the identity

4Cjb
cdCcd

ef Cef
ib = δi

jCab
cdCcd

ef Cef
ab

and this may be used to construct a formula forD̃ (and thenKd via (2.23)) alternative to
(2.25) and (2.26). (See[19] for this and some other examples.)
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Finally note that although generally we need to make some restriction on the class of
metrics to obtain a canonical formula forD̃bcde in terms of the curvature, in other circum-
stances it is generally easy to make a choice and give a description of aD̃. For example
in a non-Riemannian setting one can calculate in a fixed local basis field and artificially
nominate a Riemannian signature metric. Using this to contract indices of the Weyl cur-
vature (given in the set basis field) one can then use the formula forL and thenD. In this
wayProposition 2.7is an effective and practical means of testing for conformally Einstein
metrics, among the class weakly generic metrics, even when it does not lead to a natural
invariant.

3. A geometric derivation and new obstructions

The derivation of the system ofTheorem 2.2appears ad hoc. We will show that in fact [C]
and [B] are two parts (or components) of a single conformal equation that has a simple and
clear geometric interpretation. This construction then easily yields new obstructions. This is
based on the observation that conformally Einstein manifolds may be characterised as those
admitting a parallel section of a certain vector bundle. The vector bundle concerned is the
(standard) conformal tractor bundle. This bundle and its canonical conformally invariant
connection are associated structures for the normal conformal Cartan connection of[9].
The initial development of the calculus associated to this bundle dates back to the work
of Thomas[31] and was reformulated and further developed in a modern setting in[2].
For a comprehensive treatment exposing the connection to the Cartan bundle and relating
the conformal case to the wider setting of parabolic structures see[7,6]. The calculational
techniques, conventions and notation used here follow[16,15].

3.1. Conformal geometry and tractor calculus

We first introduce some of the basic objects of conformal tractor calculus. It is useful here
to make a slight change of point of view. Rather than take as our basic geometric structure
a Riemannian or pseudo-Riemannian structure we will take as our basic geometry only a
conformal structure. This simplifies the formulae involved and their conformal transforma-
tions. It is also a conceptually sound move since conformally invariant operators, tensors
and functions are exactly the (pseudo-)Riemannian objects that descend to be well defined
objects on a conformal manifold. A signature (p, q) conformal structure [g] on a manifold
M, of dimensionn ≥ 3, is an equivalence class of metrics where ˆg ∼ g if ĝ = e2ϒg for
someϒ ∈ E. A conformal structure is equivalent to a ray subbundleQ of S2T ∗M; points
ofQ are pairs (gx, x) wherex ∈ M andgx is a metric atx, each section ofQ gives a metric
g on M and the metrics from different sections agree up to multiplication by a positive
function. The bundleQ is a principal bundle with groupR+, and we denote byE[w] the
vector bundle induced from the representation ofR+ onR given byt �→ t−w/2. Sections of
E[w] are called aconformal densities of weight w and may be identified with functions on
Q that are homogeneous of degreew, i.e.,f (s2gx, x) = swf (gx, x) for anys ∈ R+. We will
often use the same notationE[w] for the space of sections of the bundle. Note that for each
choice of a metricg (i.e., section ofQ, which we term achoice of conformal scale), we may
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identify a sectionf ∈ E[w] with a functionfg on M by fg(x) = f (gx, x). This function is
conformally covariant of weightw in the sense of Section2, since if ĝ = e2ϒg, for some
ϒ ∈ E, thenfĝ(x) = f (e2ϒxgx, x) = ewϒxf (gx, x) = ewϒxfg(x). Conversely conformally
covariant functions determine homogeneous sections ofQ and so densities. In particular,
E[0] is canonically identified withE.

Note that there is a tautological functiong onQ taking values inS2T ∗M. It is the function
which assigns to the point (gx, x) ∈ Q the metricgx atx. This is homogeneous of degree 2
sinceg(s2gx, x) = s2gx. If ξ is any positive function onQ homogeneous of degree−2 then
ξg is independent of the action ofR+ on the fibres ofQ, and soξg descends to give a metric
from the conformal class. Thusg determines and is equivalent to a canonical section of
Eab[2] (called the conformal metric) that we also denoteg (or gab). This in turn determines
a canonical sectiongab (org−1) of Eab[−2] with the property thatgabg

bc = δc
a (whereδc

a is
kronecker delta, i.e., the section ofEca corresponding to the identity endomorphism of the
tangent bundle). In this section the conformal metric (and its inversegab) will be used to
raise and lower indices. This enables us to work with density valued objects. Conformally
covariant tensors as in Section2 correspond one-one with conformally invariant density
valued tensors. Each non-vanishing sectionσ of E[1] determines a metricgσ from the
conformal class by

gσ := σ−2g. (3.1)

Conversely ifg ∈ [g] then there is an up-to-sign uniqueσ ∈ E[1] which solvesg = σ−2g,
and soσ is termed a choice of conformal scale. Given a choice of conformal scale, we
write ∇a for the corresponding Levi–Civita connection. For each choice of metric there is
also a canonical connection onE[w] determined by the identification ofE[w] with E, as de-
scribed above, and the exterior derivative on functions. We will also call this the Levi–Civita
connection and thus for tensors with weight, e.g.va ∈ Ea[w], there is a connection given
by the Leibniz rule. With these conventions the Laplacian� is given by� = gab∇a∇b =
∇b∇b.

We next define the standard tractor bundle over (M, [g]). It is a vector bundle of rank
n + 2 defined, for eachg ∈ [g], by [EA]g = E[1] ⊕ Ea[1] ⊕ E[−1]. If ĝ = e2ϒg, we identify
(α, µa, τ) ∈ [EA]g with (α̂, µ̂a, τ̂) ∈ [EA]ĝ by the transformation




α̂

µ̂a

τ̂


 =




1 0 0

ϒa δa
b 0

−1
2ϒcϒ

c −ϒb 1







α

µb

τ


 . (3.2)

It is straightforward to verify that these identifications are consistent upon changing to
a third metric from the conformal class, and so taking the quotient by this equivalence
relation defines thestandard tractor bundle EA over the conformal manifold. (Alternatively
the standard tractor bundle may be constructed as a canonical quotient of a certain 2-
jet bundle or as an associated bundle to the normal conformal Cartan bundle[6].) The
bundleEA admits an invariant metrichAB of signature (p + 1, q + 1) and an invariant
connection, which we shall also denote by∇a, preservinghAB. In a conformal scaleg,
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these are given by

hAB =




0 0 1

0 gab 0

1 0 0


 and ∇a




α

µb

τ


 =




∇aα − µa

∇aµb + gabτ + Pabα

∇aτ − Pabµ
b


 .

It is readily verified that both of these are conformally well defined, i.e., independent of the
choice of a metricg ∈ [g]. Note thathAB defines a section ofEAB = EA ⊗ EB, whereEA is
the dual bundle ofEA. Hence we may usehAB and its inversehAB to raise or lower indices
of EA, EA and their tensor products.

In computations, it is often useful to introduce the ‘projectors’ fromEA to the components
E[1], Ea[1] andE[−1] which are determined by a choice of scale. They are respectively de-
noted byXA ∈ EA[1], ZAa ∈ EAa[1] andYA ∈ EA[−1], whereEAa[w] = EA ⊗ Ea ⊗ E[w],
etc. Using the metricshAB and gab to raise indices, we defineXA, ZAa, YA. Then we
immediately see that

YAXA = 1, ZAbZ
A
c = gbc

and that all other quadratic combinations that contract the tractor index vanish. This is
summarised inFig. 1.

It is clear from(3.2)that the first componentα is independent of the choice of a represen-
tativeg and henceXA is conformally invariant. ForZAa andYA, we have the transformation
laws:

ẐAa = ZAa + ϒaXA, ŶA = YA − ϒaZ
Aa − 1

2ϒaϒ
aXA. (3.3)

Given a choice of conformal scale we have the corresponding Levi–Civita connection
on tensor and density bundles. In this setting we can use the coupled Levi–Civita tractor
connection to act on sections of the tensor product of a tensor bundle with a tractor bundle.
This is defined by the Leibniz rule in the usual way. For example ifubVCα ∈ Eb ⊗ EC ⊗
E[w] =: EbC[w] then∇au

bVCα = (∇au
b)VCα + ub(∇aV

C)α + ubVC∇aα. Here∇ means
the Levi–Civita connection onub ∈ Eb andα ∈ E[w], while it denotes the tractor connection
onVC ∈ EC. In particular with this convention we have

∇aXA = ZAa, ∇aZAb = −PabXA − YAgab, ∇aYA = PabZA
b. (3.4)

Note that ifV is a section ofEA1···A	
[w], then the coupled Levi–Civita tractor connec-

tion on V is not conformally invariant but transforms just as the Levi–Civita connection
transforms on densities of the same weight:∇̂aV = ∇aV + wϒaV .

Fig. 1. Tractor inner product.
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Given a choice of conformal scale, thetractor-D operator

DA : EB···E[w] → EAB···E[w − 1]

is defined by

DAV := (n + 2w − 2)wYAV + (n + 2w − 2)ZAa∇aV − XA�V, (3.5)

where�V := �V + wPb
bV . This also turns out to be conformally invariant as can be

checked directly using the formulae above (or alternatively there are conformally invariant
constructions ofD, see e.g.[14]).

The curvature
 of the tractor connection is defined by

[∇a, ∇b]VC = 
ab
C

EVE (3.6)

for VC ∈ EC. Using (3.4) and the usual formulae for the curvature of the Levi–Civita
connection we calculate (cf.[2])


abCE = ZC
cZE

eCabce − 2X[CZE]eAeab. (3.7)

From the tractor curvature we obtain a related higher order conformally invariant curva-
ture quantity by the formula (cf.[14,15])

WBC
E

F := 3

n − 2
DAX[A
BC]

E
F .

It is straightforward to verify that this can be re-expressed as follows:

WABCE = (n − 4)ZA
aZB

b
abCE − 2X[AZB]
b∇p
pbCE. (3.8)

This tractor field has an important relationship to the ambient metric of Fefferman and Gra-
ham. For a conformal manifold of signature (p, q) the ambient manifold[11] is a signature
(p + 1, q + 1) pseudo-Riemannian manifold withQ as an embedded submanifold. Suit-
ably homogeneous tensor fields on the ambient manifold upon restriction toQ determine
tractor fields on the underlying conformal manifold[8]. In particular, in dimensions other
than 4,WABCD is the tractor field equivalent to (n − 4)R|Q whereR is the curvature of the
Fefferman–Graham ambient metric.

3.2. Conformally Einstein manifolds

Recall that we say a Riemannian or pseudo-Riemannian metricg is conformally Einstein
if there is a scaleϒ such that the Ricci tensor, or equivalently the Schouten tensor, is pure
trace. Thus we say that a conformal structure [g] is conformally Einstein if there is a metric
ĝ in the conformal class (i.e. ˆg ∈ [g]) such that the Schouten tensor for ˆg is pure trace.
We show here that a conformal manifold (M, [g]) is conformally Einstein if and only if it
admits a parallel standard tractorIA which also satisfies the condition thatXAIA is nowhere
vanishing. Note that in a sense the “main condition” is thatI is parallel since the requirement
thatXAIA is non-vanishing is an open condition. In more detail we have the following result.
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Theorem 3.1. On a conformal manifold (M, [g]) there is a 1–1 correspondence between
conformal scales σ ∈ E[1], such that gσ = σ−2g is Einstein, and parallel standard tractors
I with the property that XAIA is nowhere vanishing. The mapping from Einstein scales to
parallel tractors is given by σ �→ 1

n
DAσ while the inverse is IA �→ XAIA.

Proof. Suppose that (M, [g]) admits a parallel standard tractorIA such thatσ := XAIA is
nowhere vanishing. Sinceσ ∈ E[1] and is non-vanishing it is a conformal scale. Letg be
the metric from the conformal class determined byσ, that isg = gσ = σ−2g as in(3.1). In
terms of the tractor bundle splitting determined by this metricIA is given by some triple with
σ as the leading entry, [IA]g = (σ, µa, τ). From the formula for the invariant connection we
have

0 = [∇aI
B]g =




∇aσ − µa

∇aµb + gabτ + Pabσ

∇aτ − Pabµ
b


 . (3.9)

Thusµa = ∇aσ, but∇aσ = 0 by the definition of∇ in the scaleσ. Thusµa vanishes,
and the second tensor equation from(3.9)simplifies to

Pabσ = −gabτ,

showing that the metricg is Einstein. Note that tracing the display givesτ = − 1
n
Jσ.

To prove the converse let us now suppose thatσ is a conformal scale so thatg = σ−2g

is an Einstein metric. That is, for this metricg, Pab is pure trace. Let us work in this
conformal scale. Then we havePab = 1

n
gabJ. Thus∇aPab = (1/n)∇bJ. On the other hand

comparing this to the contracted Bianchi identity∇aPab = ∇bJ we have that∇aJ = 0.
Now, we define a tractor fieldIA by IA := 1

n
DAσ. Then [I]gσ := (σ, 0, − 1

n
Jσ). Consider

the tractor connection on this. We have

[∇aI
B]g =




∇aσ

− 1
n
gabJσ + Pabσ

− 1
n
(σ∇aJ + J∇aσ)


 .

Once again, by the definition of the Levi–Civita connection∇ as determined by the scaleσ,
we have∇σ = 0. SincePab = 1

n
gabJ the second entry also vanishes. The last component

also vanishes from∇J = 0 and∇σ = 0. SoI is a parallel standard tractor satisfying that
XAIA = σ is non-vanishing. �

Remarks:

• Note thath(I, I) is a conformal invariant of density weight 0. In fact from the formulae
above, in the Einstein scale,h(I, I) = − 2

n
σ2J. Recall that in this sectionJ = gabPab and

so has density weight−2 and

σ2J = σ2gabPab = gabPab.
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That is−n
2h(I, I) is the trace of Schouten tensor using the metric determined byσ. Since

∇ preserves the tractor metric andI is parallel we recover the (well known) result that
Pab (and its trace) is constant for Einstein metrics.

• Suppose we drop the condition thatσ := XAIA is nowhere vanishing. IfIA is parallel
then from(3.9) it follows thatµa = ∇aσ. Furthermore tracing the middle entry on the
right-hand side of(3.9)implies thatτ = − 1

n
�σ. In fact if ∇aIB = 0 atp ∈ M then there

existsσ ∈ E[1] so that atp we haveIB = 1
n
DBσ. Now clearly 1

n
XBDBσ = σ vanishes

on a neighbourhood if and only if1
n
DBσ vanishes on the same neighbourhood. So for

parallelIA, XAIA is non-vanishing on an open dense subset ofM. The points whereσ
vanishes are scale singularities for the metricg = σ−2g.

• The relationship between parallel tractors and conformally Einstein metrics, while im-
plicit in [2], was probably first observed and treated in some detail by Gauduchon in
[13] (and we thank Claude LeBrun for drawing our attention to Gauduchon’s results in
this area). On dimension 4 spin manifolds it is straightforward to show that the standard
tractor bundle is isomorphic to the second exterior power of Penrose’s[27] local twistor
bundle. Under this isomorphismI may be identified with theinfinity twistor (defined for
spacetimes). The relationship to conformal Einstein manifolds is well known[22,12] in
that setting.

• We should also point out that the theorem above can alternatively be deduced, via some
elementary arguments but without any calculation, from the construction of the tractor
connection as in[2].

Next we make some elementary observations concerning parallel tractors.

Lemma 3.2. On a conformal manifold let N be a parallel section of the standard tractor
bundle T. Then:


bc
D

ENE = 0 and WBCDENE = 0.

Proof. By assumption we have∇aN
D = 0. Thus
bc

D
ENE = [∇b, ∇c]ND = 0 and the

first result is established.
Next WA1A2

D
ENE = 3

n−2(DA0XA0ZA1
bZA2

c
bc
D

E)NE, where, as usual, sequen-
tially labelled indices e.g.A0, A1, A2 are implicitly skewed over. Now the quantity
XA0ZA1

bZA2
c
bc

D
E has (density) weight−1, so from the formula(3.5) for D, we have

(DA0XA0ZA1
bZA2

c
bc
D

E)NE = (4 − n)YA0XA0ZA1
bZA2

c
bc
D

ENE

+ (n − 4)(ZA0a∇aXA0ZA1
bZA2

c
bc
D

E)NE

− (XA0�XA0ZA1
bZA2

c
bc
D

E)NE

+ JXA0XA0ZA1
bZA2

c
bc
D

ENE,

where∇ and� act on everything to their right within the parentheses. The first and last
terms on the right-hand side vanish from the previous result. (In fact for last term we could
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also use thatXA0XA0ZA1
bZA2

c = 0.) Next observe that, since∇N = 0, we have

(ZA0a∇aXA0ZA1
bZA2

c
bc
D

E)NE = ZA0a∇a(XA0ZA1
bZA2

c
bc
D

ENE) = 0,

where we have again used the earlier result,
bc
D

ENE = 0. Similarly

(XA0�XA0ZA1
bZA2

c
bc
D

E)NE = XA0�(XA0ZA1
bZA2

c
bc
D

ENE) = 0. �

From the lemma it follows immediately that on conformally Einstein manifolds the
parallel tractorI, of Theorem 3.1, satisfies
bc

D
EIE = 0 andWBCDEIE = 0. In general the

converse is also true. More accurately we have the result given in the following theorem.
Before we state that, note that since the Weyl curvature is conformally invariant it follows
that Eqs.(2.15)–(2.17)are conformally invariant. Thus if any metric from a conformal class
is generic then all metrics from the class are generic and we will describe the conformal
class as generic.

Theorem 3.3. A generic conformal manifold of dimension n �= 4 is conformally Einstein
if and only if there exists a tractor field IA ∈ EA such that XAIA is non-vanishing and

WBCDEIE = 0.

A generic conformal manifold of dimension n = 4 is conformally Einstein if and only if
there exists a tractor field IA ∈ EA such that XAIA is non-vanishing,


bc
D

EIE = 0 and WBCDEIE = 0.

Proof. We have shown that on a conformally Einstein manifold there is a (parallel) standard
tractor field satisfying

(i) XAIA nowhere vanishing,
(ii) 
bc

D
EIE = 0,

(iii) WBCDEIE = 0.

It remains to prove the relevant converse statements. First we observe that given (i), (ii)
is exactly the conformal C-space equation. From above we have that


abCE = ZC
cZE

eCabce − XCZE
eAeab + XEZC

eAeab.

A general tractorIA ∈ EA may be expanded to

IE = YEσ + ZEdµd + XEτ,

whereσ = XAIA and we assume this is non-vanishing. Hence


abCEIE = σZC
cAcab + ZC

cµdCabcd − XCµdAdab. (3.10)
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Setting this to zero, as required by (ii), implies that the coefficient ofZC
c must vanish, i.e.,

σAcab + µdCabcd = 0, or

Acab + KdCdcab = 0, Kd := −σ−1µd, (3.11)

which is exactly the conformal C-space equation [C] as inTheorem 2.2. Contracting this
with µc (or Kc) annihilates the second term and so

µdAdab = 0,

whence the coefficient ofXC in (3.10)vanishes as a consequence of the earlier equation
and it is shown that (with (i))
abCEIE = 0 is exactly the conformal C-space equation.

Now recall

WBCDE = (n − 4)ZB
bZC

c
bcDE − 2X[BZC]c∇a
acDE,

and so, in dimensions other 4,WBCDEIE = 0 implies
bcDEIE = 0 (and hence the con-
formal C-space equation). From the display we see thatWBCDEIE = 0 also implies that
IE∇a
acDE = 0 or equivalentlyσ−1IE∇a
acDE = 0. Once again using the formulae for
the tractor connection we obtain

∇a
acDE = (n − 4)ZD
dZE

eAcde − XDZE
eBec + XEZD

eBec, (3.12)

whereBec is the Bach tensor. Henceσ−1IE∇a
acDE = 0 expands to

−(n − 4)ZD
dKeAcde + XDKeBec + ZD

dBdc = 0.

From the coefficient ofZD
d we have

Bdc − (n − 4)KeAcde = 0

which, with the conformal C-space equation (and sinceB is symmetric), gives

Bcd + (n − 4)KeKaCacde = 0 (3.13)

which is exactly the second equation [B] ofTheorem 2.2. If this holds then it follows at
once thatKcBcb = 0 and so in the expansion ofσ−1IE∇a
acDE = 0 the coefficient ofXD

vanishes without further restriction. Thus we have shown that in dimensions other than 4
the single conformally invariant tractor equationWBCDEIE = 0 is equivalent to the two
equations [C] and [B]. In dimension 4 it is clear from(3.8)thatWBCDEIE = 0 is equivalent
to IE∇a
acDE = 0 and this withIE
acDE = 0 gives the pair of equations [B] and [C]. In
either case then the theorem here now follows immediately fromTheorem 2.2. �

Remarks:

• Note that conditions (i), (ii) and (iii), as in the theorem, do not imply thatI is parallel.
On the other hand the theorem shows that if there exists a standard tractorI satisfying
these conditions then (on generic manifolds) also there exists a parallel standard tractorI′
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satisfying these conditions. Calculating in an Einstein scale, it follows from the conformal
C-space equation that one hasZA

aIA = ZA
aI

′
A = 0. Hence thatI′ = f I + ρX for some

sectionρ of E[−1] and non-vanishing functionf.
• Recall that in Section3.1we pointed out that in dimensions other than 4,WABCD is the

tractor field equivalent[8] to (n − 4)R|Q whereR is the curvature of the Fefferman–
Graham ambient metric. Thus, in these dimensions, the conditionWABCDID = 0 is
equivalent to the existence of a suitably homogeneous and generic ambient tangent
vector field alongQ in the ambient manifold which annihilates the ambient curvature.

• We had already observed in Section2.5 thatAabc + KdCdabc is conformally invariant
if we assume thatKd has the conformal transformation laŵKa = Ka − ϒa (where
ĝ = e2ϒg). From the proof above we see this transformation formula fits naturally into
the tractor picture and arises from(3.2) sinceKa is a density multiple of the middle
component of a tractor field according to(3.11).

3.3. Sharp obstructions via tractors

Theorem 3.3gives a simple interpretation ofTheorem 2.2in terms of tractor bundles.
In the proof of this above, this connection was made by recovering the familiar tensor
equations from Section2. Here we first observe that entire derivation ofTheorem 2.2and
its proof reduces to a few key lines if we work in the tractor picture. This then leads to a
stronger theorem as below.

We summarise the background first. FromTheorem 3.1we know that the existence of a
conformal Einstein structure is equivalent to the existence of a parallel tractorI (at points
whereXAIA �= 0). This immediately implies that the tractor curvature
abCD satisfies

[C̃] ID
abCD = 0, [B̃] ID∇a
abCD = 0.

We have labelled these [C̃] and [B̃] since (as shown in the proof above) the first equation is
equivalent to the earlier [C] and, given this, the second equation is equivalent to the earlier
equation [B]. The conformal invariance of the systems [C] and [B] is now immediate in all
dimensions from the observation that the conformal transformation of∇a
abCD is

̂∇a
abCD = ∇a
abCD + (n − 4)ϒa
abCD, (3.14)

and whence the conformal transformation of the left-hand side of equation [B̃] is

̂ID∇a
abCD = ID∇a
abCD + (n − 4)ϒaID
abCD,

whereĝ = e2ϒg; from this it is immediate that [̃B] is invariant on metrics that solve [C̃]. We
should point out that in dimension 4 it follows immediately from(3.12)thatID∇a
abCD =
0 ⇔ ∇a
abCD = 0 ⇔ Bab = 0.

Now we are interested in the converse. We will show that if the displayed equations [C̃]
and [B̃] hold for some tractorI, satisfying thatXAIA is non-vanishing, then the structure is
conformally Einstein. Here is an alternative proof ofTheorem 3.3(and hence an alternative
proof of Theorem 2.2). Equation [̃C] implies that∇a1(
a2a3CDID) = 0, where as usual



A.R. Gover, P. Nurowski / Journal of Geometry and Physics 56 (2006) 450–484 475

sequentially labelled indices are skewed over. From the Bianchi identity for the tractor
curvature,∇a1
a2a3CD = 0, it follows that


a2a3CD∇a1I
D = 0. (3.15)

Now equation [̃C] implies [C], viz.Acab + KdCdcab = 0. As we saw earlier this (using that
the metric is�2-generic) implies thatKa is a gradient and that there is a conformal scale
such that the Cotton tensorAcab vanishes. In this special C-space scale (see Section2.5) it is
clear thatKa is also zero and(3.15)simplifies (using(3.9) and (3.7)) toPa1

dCa2a3cdZ
c
C = 0

or equivalently

C∗
b1···bn−2cd

Pb1d = 0. (3.16)

Note that ifC∗ is suitably generic this already implies that the metric that gives the special
C-space scale is Einstein.

Using only the weaker assumption that the manifold is generic in the sense of Section
2.4 we must also use [B̃]. The argument is similar to the above. Equation [C̃] implies
∇a(ID
abCD) = 0. Thus using [̃B] we have

(∇aID)
abCD = 0.

In the special C-space scale this expands toPadCabcdZ
c
C = 0, which is equivalent to

PadCabcd = 0. (3.17)

Clearly Eqs.(3.17) and (3.16)imply thatP is pure trace on generic manifolds and so the
theorem is proved. In fact these Eqs.(3.17) and (3.16)are respectively Eqs.(2.21) and (2.22)
both written in the C-space scale.

The construction of the systems [B̃] and [C̃] immediately suggests alternative systems.
In particular we have the following results which only requires the manifold to be weakly
generic.

Theorem 3.4. A weakly generic conformal manifold is conformally Einstein if and only if
there exists a non-vanishing tractor field IA ∈ EA such that

[C̃] IE
bcDE = 0, [D̃] IE∇a
bcDE = 0.

The systems [C̃] and [D̃] are conformally invariant.

Proof. Note that from(2.9), and the invariance of the tractor connection, we have

̂IE∇a
bcDE = IE∇a
bcDE − 2ϒaI
E
bcDE − ϒbI

E
acDE − ϒcI
E
baDE

+ gabϒ
kIE
kcDE + gacϒ

kIE
bkDE,

whereĝ = e2ϒg, and so [̃D] is conformally invariant if the conformally invariant equation
[C̃] is satisfied; the systems [C̃] and [D̃] are conformally invariant.

If the manifold is conformally Einstein then there is a parallel tractorIE. We have
observed earlier that this satisfies [C̃]. Differentiating [̃C] and then using once again thatIE

is parallel shows that [̃D] is satisfied.



476 A.R. Gover, P. Nurowski / Journal of Geometry and Physics 56 (2006) 450–484

Now we assume that [C̃] and [D̃] hold. If IE = YEσ + ZEdµd + XEτ, then
abCEIE is
given by(3.10). Suppose thatXAIA = σ vanishes at some pointx. Then from(3.10)we have
µdCabcd = 0 atx (andµdAdab = 0 atx) and so, since the conformal class is weakly generic,
µd(x) = 0. ThusIE = τXE, atx, and [D̃] givesXE∇a
bcDE = 0 atx. But,∇aX

E = ZE
a

and from(3.7)XE
bcDE = 0, and soZD
dCbcda − XDAabc = ZE

a
bcDE = 0 atx. But this
meansCbcda(x) = 0 which contradicts the assumption that the conformal class is weakly
generic. SoXAIA is non-vanishing.

Now, differentiating [̃C] and then using [̃D] we obtain


bcDE∇aI
E = 0.

But, since the manifold is weakly generic,
bcDE must have rank at leastn as a map

bcDE : EbcD → EE. Also, from(3.7)and [C̃], XE andIE are orthogonal to the range. So
the display implies that

∇aI
E = αaI

E + βaX
E,

for some 1-formsαa andβa. (An alternative explanation is to note, as earlier, that ifUE is
not a multiple ofXE and
bcDEUE = 0 then from(3.7) it follows thatUE determines a
non-trivial solution of the equation [C]. SinceIE also determines such a solution it follows
at once fromProposition 2.4thatUE = αIE + βXE.) Differentiating again and alternating
we obtain


ba
E

DID = 2IE∇[bαa] + 2α[aαb]I
E + 2α[aβb]X

E + 2XE∇[bβa] + 2β[aZ
E

b] .

The left-hand side vanishes by assumption and of courseα[aαb]I
E = 0. ContractingXE

into the remaining terms brings us to

0 = 2σ∇[aαb]

and soα is closed. Locally thenαa = ∇af for some functionf and sõIE := e−f IE satisfies

∇aĨ
E = β̃aX

E (3.18)

for some 1-form̃βa. Expanding̃IE: ĨE = YEσ̃ + ZEdµ̃d + XEτ̃ we haveXE Ĩe = σ̃ (which
is non-vanishing) and, from(3.18), the equations

∇aσ̃ − µ̃a = 0, ∇aµ̃b + gabτ̃ + Pabσ̃ = 0

cf. (3.9). So for the metricg := σ̃−2g we haveµ̃a = ∇aσ̃ = 0 andPab + gabτ̃/σ̃ = 0. That
is the metricg is Einstein (and1

n
DAσ̃ is parallel). �

We have the following consequence of the theorem above.
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Corollary 3.5. A weakly generic pseudo-Riemannian or Riemannian metric g on an n-
manifold is conformally Einstein if and only if the natural invariants


abKD1 · · · 
cdLDs∇e
fgPDs+1 · · · ∇h
k	QDn+2,

for s = 0, 1, . . . , n + 1, all vanish. Here the sequentially labelled indices D1, . . . , Dn+2
are completely skewed over.

Proof. The theorem can clearly be rephrased to state thatg is conformally Einstein if and
only if the map

(
bcDE, ∇a
bcDE) : EbcD ⊕ EabcD → EE (3.19)

given by

(VbcD, WabcD) �→ VbcD
bcDE + WabcD∇a
bcDE

fails to have maximal rank at every point ofM. But by elementary linear algebra this
happens if and only if the induced alternating multi-linear map to�n+2(EE) vanishes. This
is equivalent to the claim in the Corollary, since for any metric the tractor curvature satisfies

bcDEXE = 0. �

If M is oriented (which locally we can assume with no loss of generality) then it is
straightforward to show that there is a canonical skew (n + 2)-tractor consistent with the
tractor metric and the orientation. Let us denote this byεC1···Cn+2. Using this, we could
equally rephrase the Corollary in terms of the invariants

εD1D2···DsDs+1···Dn+1Dn+2
abKD1 · · · 
cdLDs∇e
fgPDs+1 · · · ∇h
k	QDn+2,

for s = 0, 1, . . . , n + 1. These all vanish if and only if the metric is conformally Einstein.
The natural invariants in the lemma are given by mixed tensor-tractor fields, rather pure

tensors. However by expanding
abCD and∇a
bcDE using(3.7) and (3.4)it is straight-
forward to obtain an equivalent set of tensorial obstructions from these. The system of
obstructions so obtained is rather unwieldy and could be awkward to apply in practise.
Nevertheless this gives a system of invariants, which works equally for all signatures.

As a final remark in this section we note that coming toProposition 2.7via the tractor
picture is also very easy. If we want to test whether a scaleσ ∈ E[1] is an Einstein scale
we defineIB := 1

n
DBσ as in Theorem 3.1and consider∇aIB. Calculating in terms of

an arbitrary metricg from the conformal class we get∇aIB = ZB
bσEab, modulo terms

involvingXB, whereEab = Trace-free(Pab − ∇aKb + KaKb) andKa := −σ−1∇aσ. Since
σ can only be an Einstein scale if
bc

D
EIE = 0 we obtain the conformal C-space equation

for Ka and we are led to the conclusion that the Riemannian invariant of the proposition
is conformally invariant and also the conclusion that it must vanish on conformal Einstein
manifolds.
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4. Examples

Here we shed light on the various notions of generic metrics, mainly by way of examples.
First let us note that each of these is an open condition on the moduli space of possible
curvatures. Thus in this sense “almost all” metrics are generic (and hence�2-generic and
weakly generic). The many components of the Weyl curvatureCabcd arise from a�2-generic
metric unless they lie on the closed variety determined by the one condition‖C‖ = 0 where,
recall,‖C‖ is the determinant of the map(2.18). The metrics which fail to be weakly generic
correspond to a closed subspace contained in the‖C‖ = 0 variety. In the Riemannian case
this subvariety is given by‖L‖ = 0, where recall‖L‖ is the determinant ofCacdeCbcde and
we show below that in dimension 4 the containment is proper.

Another aim in this final section is to establish the independence of the conditions [C]
and [B] from Section2.4. We assume thatn ≥ 4 throughout this section.

4.1. Simple n-dimensional Robinson–Trautman metrics

Let Q be an (n − 2)-dimensional space of constant curvatureκ and denote byxi,
i = 1, 2, . . . , n − 2, standard stereographic coordinates onQ. We takeM = R2 × Q, with
coordinates (r, u, xi), where (r, u) are coordinates along theR2, and equipM with a subclass
of Robinson–Trautman[28] metricsg by

g = 2 du[dr + h(r) du] + r2 gij dxi dxj(
1 + κ

4gklxkxl
)2 . (4.1)

Heregij = diag(ε1, ε2, . . . , εn−2), εi = ±1,κ = 1, 0, −1 andh = h(r) is an arbitrary, suffi-
ciently smooth real function of variabler. In the following we describe conformal properties
of the metrics(4.1).

To calculate the Weyl tensor we introduce the null-orthonormal coframe (θa) =
(θ+, θ−, θi) by

θ+ = du, θ− = dr + h du, θi = r
dxi

1 + κ
4gklxkxl

. (4.2)

In this coframe the metric takes the formg = gabθ
aθb where

gab =




0 1

1 0

gij


 . (4.3)

We lower and raise the indices by means of the matrixgab and its inversegab. The Levi–
Civita connection 1-forms

�ab = �abcθ
c

are uniquely determined by

dθa + �a
b ∧ θb = 0 and dgab − �ab − �ba = 0. (4.4)
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Explicitly, we find that, the connection 1-forms are

�ij = κ

2r
(xiθj − xjθi), �−j = −1

r
θj, �+j = h

r
θj, �+− = h′θ+,

(4.5)

whereh′ = dh
dr

. (Observe that, due to the constancy of the matrix elements ofgab, the matrix
�ab is skew,�ab = −�ba.) The curvature 2-forms


ab = 1
2Rabcdθ

c ∧ θd = d�ab + �a
c ∧ �cb

are


ij = κ + 2h

r2 θi ∧ θj, 
−j = h′

r
θ+ ∧ θj, 
+j = h′

r
θ− ∧ θj,


+− = h′′θ− ∧ θ+, (4.6)

with the remaining components determined by symmetry. The non-vanishing components
of the Ricci tensor

Rab = Rc
acb

and the Ricci scalar

R = gabRab

are

Rij =
[
(n − 3)

κ + 2h

r2 + 2h′

r

]
gij, R+− = (n − 2)

h′

r
+ h′′,

R = (n − 2)

[
(n − 3)

κ + 2h

r2 + 4h′

r

]
+ 2h′′. (4.7)

From this we conclude that metrics(4.1)are Einstein,

Rab = �gab,

if and only if

h(r) = −κ

2
+ m

rn−3 + �

2(n − 1)
r2, (4.8)

where m and � are constants. These metrics form the well knownn-dimensional
Schwarzschild-(anti-)de Sitter 2-parameter class in whichm is interpreted as the mass and
� as the cosmological constant. (The space is termed de Sitter if� > 0 and anti-de Sitter
is � < 0.) Thus, we have the following proposition.
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Proposition 4.1. The only Einstein metrics among the Robinson–Trautman metrics

g = 2 du[dr + h(r) du] + r2 gij dxi dxj(
1 + κ

4gklxkxl
)2

are the Schwarzschild-(anti-)de Sitter metrics, for which

h(r) = −κ

2
+ m

rn−3 + �

2(n − 1)
r2.

The Weyl tensor of metrics(4.1)has the following non-vanishing components:

Cijkl = 2�(gkigjl − gkjgil), C−i+k = (3 − n)�gik,

C+−+− = (3 − n)(n − 2)�, (4.9)

where

� = 1

(n − 1)(n − 2)

[
κ + 2h

r2 − 2h′

r
+ h′′

]
,

and the further non-vanishing components determined from these by the Weyl symmetries.
Now, we consider the equation

CabcdF
cd = 0 (4.10)

for the antisymmetric tensorFab. We easily find that

CijabF
ab = 4�Fij, Ci+abF

ab = (3 − n)�gikF
k−,

Ci−abF
ab = (3 − n)�gikF

k+, C+−abF
ab = 2(3− n)(n − 2)�F+−.

Thus, if� �= 0, Eq.(4.10)has unique solutionFab = 0. We pass to the equation

CabcdH
bd = 0 (4.11)

for a symmetric and trace-free tensorHab. In the null-orthonormal coframe(4.2)the trace-
free condition reads

H + 2H+− = 0, whereH = gikHik. (4.12)

Comparing this with

CibkdH
bd = 2�[gik(H + (3 − n)H−+) − Hik], Cib−dH

bd = (n − 3)�gikH
+k,

Cib+dH
bd = (n − 3)�gikH

−k, C−b−dH
bd = (n − 2)(n − 3)�H++,

C+b+dH
bd = (n − 2)(n − 3)�H−−

proves that the only solution of(4.11)is Hab = 0. Thus we have the following proposition.
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Proposition 4.2. If

� = 1

(n − 1)(n − 2)

[
κ + 2h

r2 − 2h′

r
+ h′′

]
�= 0

the Robinson–Trautman metrics

g = 2 du[dr + h(r) du] + r2 gij dxi dxj(
1 + κ

4gklxkxl
)2

are generic.

By a straightforward calculation we obtain the following proposition.

Proposition 4.3. Each Robinson–Trautman metric for which � �= 0,satisfies the conformal
C-space condition [C] with a vector field Ka given by

Ka = ∇a log[r(1−n)/(n−3)�1/(3−n)]. (4.13)

From this andPropositions 2.4 and 4.2it follows that the Robinson–Trautman metrics
for which� �= 0 are conformal to Einstein metrics if and only if

Pab − ∇aKb + KaKb − 1

n
(P − ∇cKc + KcKc)gab = 0

with Ka given by(4.13). (Note that, by the uniqueness asserted inProposition 2.4, this is
equivalent to requiringEab = 0 with Eab as inProposition 2.7.) InsertingRab andKa into
this equation one finds that the metric(4.1) is conformal to an Einstein metric if and only
if the functionh = h(r) is given by

h(r) = −κ

2
+ m

rn−3 + �

2(n − 1)
r2.

This means that among the considered Robinson–Trautman metrics the only metrics which
are conformal to Einstein metrics are those belonging to the 2-parameter Schwarzschild-de
Sitter family. So we have the following conclusions. The Robinson–Trautman metrics(4.1):

• are all generic,
• all satisfy conformal C-space condition, [C]
• in general do not satisfy the Bach condition, [B].

In fact from the conformal invariance of the systems [C] and [B] (see Section3.2) and the
condition of being generic, the same conclusions hold for all metrics conformally related
to Robinson–Trautman metrics.

This, when along with four-dimensional examples of metrics satisfying the Bach con-
ditions [B] and not being conformal to Einstein[1,24], proves independence of the two
conditions [C] and [B].
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4.2. n-Dimensional pp-waves

We noted in Section2.5that there are weakly generic metrics that fail to be�2-generic,
and hence fail to be generic. Metricsg with non-vanishing Weyl curvature, and such that
there are two distinct Einstein metrics in the conformal class ofg, fail to be weakly generic.
This observation, which dates back to Brinkman[5], follows easily from the C-space equa-
tion. Explicit examples of Brinkman’s metrics, thus the metrics with non-vanishing Weyl
curvature but not weakly generic, are pp-waves. They can be described as follows.

Consider then-dimensional metric (pp-wave)

g = 2 du[dr + h(xi, u) du] + gij dxi dxj,

wheregij are the components of a constant non-degenerate (n − 2) × (n − 2) matrix. This,
in the coframe

θ+ = du, θ− = dr + h du, θi = dxi,

has curvature forms


i+ = −h,ikθ
k ∧ θ+, 
ij = 
i− = 
+− = 0.

So the Ricci scalar vanishes,R = 0, and the only non-vanishing components of the Ricci
and the Weyl tensors are

R++ = −2gijh,ij, Ci+j+ = 2

n − 2
[gijg

klh,kl − (n − 2)h,ij],

apart from the components determined by these via symmetries. Thus, this metric is Einstein
if and only if the functionh = h(xi, u) is harmonic in thexi variables,

gijh,ij = 0,

in which case it is also Ricci flat. Whether this is satisfied or not it is clear that the vector
field

K = f∂r, (4.14)

wheref is any non-vanishing function, satisfies

CabcdK
d = 0. (4.15)

Thus, the pp-wave metric is not weakly generic. It is worth noting that if the trace-free part
of the matrixh,ij is invertible the vector(4.14)is the most general solution of Eq.(4.15).
However, if it is not invertible, there are more vectorsK which satisfy(4.15).
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4.3. Four-dimensional hyperKähler metrics

Another interesting class of metrics that are weakly generic but not�2-generic or generic
can be found in the complex setting. Consider a four-dimensional non-flat hyperKähler
manifold. This admits three K̈ahler structuresI, J, K such that they satisfy quaternionic
identities, e.g.IJ + JI = 0, K = IJ and, as a consequence, is Ricci flat. We claim that
all such manifolds are weakly generic, but not�2-generic[23]. To see this, first consider
the Riemann tensor viewed as an endomorphismR(.) : �2T ∗M → �2T ∗M. Since the
fundamental formsωI, ωJ , ωK, associated withI, J, K, are each parallel we haveR(ωI ) =
R(ωJ ) = R(ωK) = 0. On the other hand from Ricci flatness we haveR(.) = C(.), where
C(.) is the Weyl tensor, also considered as and endomorphismC(.) : �2T ∗M → �2T ∗M.
Hence alsoC(ωI ) = C(ωJ ) = C(ωK) = 0, which means that the metric is not�2-generic.

On the other hand if there existed a vector fieldV such thatCabcdV
d = 0 then, be-

cause of the invariance property ofC with respect of the structuresI, J, K alsoCabcd(IV )d ,
Cabcd(JV )d andCabcd(KV )d would vanish. Since on a hyperKähler 4-manifold a quadruple
(V, IV, JV, KV ) associated with any non-vanishing vectorV constitutes a basis of vectors,
at every point, we conclude that in such a caseCabcd (and therefore the Riemann tensor)
vanishes. Thus, at any pointx where the Weyl curvature is not zero we can conclude that
V = 0 is the only solution toCabcdV

d = 0.
Thus we have the following proposition.

Proposition 4.4. Every 4-dimensional hyperKähler manifold with non-vanishing Weyl ten-
sor is weakly generic but not �2-generic.

For a local explicit example of this type see e.g.[25].
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analysis (Marseille-Luminy, 1999), in: Sémin. Congress, vol. 4, Society of Mathematics, Paris, France,
2000, pp. 129–154, Preprint ESI 865, available for viewing on the internet athttp://www.esi.ac.at.
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